Progression in Calculations at Shirley Warren Primary School

Written methods of calculations are based on mental strategies when working within the four rules of number. Written calculations involve jottings and informal methods initially before skills enable a child to progress on to more formal written methods of calculations.

Strategies for calculation need to be supported by familiar models and images to reinforce understanding. Children understand strategies at different rates and the transition between stages should not be hurried. Within this booklet, progression of calculations is outlined in different year groups. Previous stages need to be revisited in order to consolidate understanding when beginning a new strategy.

Each of the stages in calculation we use within school are outlined in this booklet and explained through symbols, pictures and diagrams. To support all calculations children need to have a quick recall of number facts to 10,20 and 100 as well as times table facts. Quick recall of number enables a child to progress through different calculations efficiently and provides greater access to problem solving.

Bar Model

At Shirley Warren Primary School, we believe that children learn through concrete, pictorial and abstract strategies. We begin by learning using concrete objects such as the use of Numicon, multi-link and dienes. This allows all children to physically see what number is represented and allows them to move objects to make strong links with their calculation. From this stage children need to develop using pictures to aid their calculations but often this will not allow them to calculate the answer for the children, it will only reveal the mathematical structure of the problem. This pictorial stage bridges the gap between concrete and abstract representations.

The bar model supports understanding of the relationship between inverse operations and this is applied into other mathematical concepts.

a	
b	c

This image also helps us to identify different relationships that occur between numbers.
For example $\mathbf{a}=\mathbf{b}+\mathbf{c} ; \mathbf{a}+\mathbf{c}+\mathbf{b} ; \mathbf{a}-\mathbf{b}=\mathbf{c} ; \mathbf{a}-\mathbf{c}=\mathbf{b}$

In problems, involving addition and subtraction there are three possible unknowns as seen to the left and given the value of two of them the third can be found.

The bar model can be rearranged to demonstrate equivalence in a traditional layout

Pupils need to develop fluency in using this structure to represent the question (for example addition and subtraction problems) in a variety of contexts using the bar model. The model will help children to see that different problems share the same mathematical structure. This structure is versatile and it application be use across children development of number.

Descriptions and questions come courtesy of the NCETM.

Progression in Addition

| | | Can you show me the right number of fingers to match the name of each Numberblock?
 Now try putting down your fingers as we count backwards! |
| :--- | :--- | :--- | :--- |
| Year
 1 | Singing games,
 storybooks and
 number rhymes
 involving counting
 forwards | $\mathbf{1 , 2 , 3 , 4 , 5 , ~ o n c e ~ I ~ c a u g h t ~ a ~ f i s h ~ a l i v e , ~ 6 , 7 , 8 , 9 , 1 0 ~ t h e n ~ I ~ l e t ~ i t ~ g o ~ a g a i n . ~}$
 Why did you let it go, because it bit my finger so
 which finger did it bite this little finger on my right |
| | Practical activities
 through play | Role play activities - has 3 apples and buys 1 more. How many apples are there altogether in the shop? |

| Year 1 | Pictorially
 represent adding
 Pictorially
 represent adding
 using an addition
 story | There are 5 balloons. 4 more balloons are added. How many balloons are there in total? |
| :--- | :--- | :--- | :--- |
| Add, more, | | |
| altogether, total | | |
| Sentences number | Children record pictorially and then informally annotate their drawing using the numbers
 $5+4=9$ | Equals, add sign |

	Combining two parts to make a whole	3 green cube plus 4 blue cubes $=7$ cubes	Add, more, altogether, total
Year 1	Using Numicon or objects to add on a number line Relate 'counting on' onto a number line	What is 2 more than 4? If I have 14 apples and I find 7 more how many do I have? 14 apples and 7 apples, 21 apples altogether.	Add, more, altogether, total equals, add sign

Year 2	Use unstructured number line to add numbers when partitioning. (own numbering and jumps)	I have $36 p$ and $m y$ mum gives me 28p pocket money. How much money do I have altogether?	$\begin{aligned} & 36 p+28 p=64 p . \\ & 36+10=46 p \\ & 46+10=56 p \\ & 56+8=64 p \end{aligned}$	Partitioning, efficient strategies
Year 2	Using unstructured number lines when crossing the hundreds boundary	$76+57=133$		Partitioning, efficient strategy, next tens number
Year 2	Horizontal partitioning both numbers	There are 23 cars in a showroom. 36 more arrive. How many are there in total? $\begin{array}{r} 23 \\ +\frac{36}{9}(3+6) \\ +50(20+30) \\ \hline \underline{59} \quad 50+9 \\ \hline \end{array}$		Partitioning Column addition partitioning to the right
	Bar model allows children to use	Dylan has 37 coloured pencils and he buys 30 more. How many does he have now?		Total

	ensuring understanding of structure and efficiency. Recall of number facts is essential for efficiency.	$10040 \quad 7$ $+20040 \quad 8$ $300 \quad 90 / 15$ 1 There are 147 daffodil bulbs on a roundabout. 248 more daffodils are added. How many are there altogether now? $\begin{aligned} & 147 \\ & +248 \\ & \hline 15(7+8) \\ & 80(40+40) \\ & \frac{300(200+100)}{395(300+80+10+5)} \\ & \hline \end{aligned}$	Column addition partitioning to the right Column or vertical addition, adding ones first, adding units first, brackets, jottings carrying across
Year 3/ 4	Column method for addition	There are 123 cars in a showroom. 236 more arrive. How many are there in total? $\begin{array}{r} 123 \\ +\underline{236} \\ \hline \mathbf{3 5 9} \\ \hline \end{array}$ There are 359 cars in total There are 167 daffodil bulbs on a roundabout. 258 more daffodils are added. How many are there altogether now? $\begin{array}{r}167 \\ +258 \\ \frac{425}{11}\end{array}$	Column method, vertical method, compact method, carry digits, carry forward, efficient method

	Build upon previous knowledge of expanded addition method when adding 4 digits by 4 digits.	There a 1234 flower in Mr Greens garden and 2340 in Mr Blooms. What is the total number of flowers in each both gardens? ```1234 +2340 4(4+0) 70(30+40) 500(300 +200) 3000(2000+1000) 3574 (3000+500 + 70 + 4)```	Total, partition ,column
	Add fractions with the same denominator		Numerator, denominator, Fraction
	Bar model is still used as number increase depending on the year group	There are 334 children at Springfield School and 75 at Holy Trinity Nursery. How many children are there altogether? \square Children must identify the two parts to find the total. $334+75=409$	Total, Whole Part, known, unknown
Year 5/6	Partitioned method for the addition of decimal number	Ann has to add two lengths of edging together. The strips measure $3.15 \mathrm{~m}, 1.058 \mathrm{~m}$. What is the total length of edging $\begin{array}{ll} 3.15 \\ +1.058 \\ \hline 0.008 & (0+0.008) \\ 0.1 & (0.05+0.05) \\ 0.1 & (0.1+0) \\ 4 & (4+0) \\ \hline 4.208 & (4+0.1+0.1+0.008) \\ \hline \end{array}$	Decimal point, Hundredths Thousandths

\begin{tabular}{|c|c|c|c|}
\hline \& Column or vertical method for addition, with decimals \& \begin{tabular}{l}
Ann has to add three lengths of edging together. The strips measure \(3.15 \mathrm{~m}, 1.058 \mathrm{~m}\) and 0.8 m . What is the total length of edging?
\[
\begin{array}{r}
3.15 \\
+1.058 \\
\hline
\end{array}
\] \\
4.208 Then children must add the 0.8 m \\
Ann has 5.008 m of edging.
\end{tabular} \& Line up decimal point \\
\hline \multirow[t]{3}{*}{Year 5/6

Year 5/6} \& Column method for several numbers. \& Bill owes Sarah £7702, Bob £77.02 and Stephanie £770.20. How much does he owe in total?

$$
\begin{array}{r}
7702.00 \\
77.02 \\
\hline 770.20 \\
\hline 8549.22
\end{array}+
$$ \& Line up decimal point Hundredths Thousandths

\hline \& Bar model can visually allow students to visualise problems with multiple steps \& Peter is playing Space Explorer on his computer. He finished 13 of the levels last week and 25 of the remaining levels this week. He has 12 more levels to complete. How many levels does Space Explorer have? \&

\hline \& Add fractions with different denominators \& Marta filled a bucket with $2 / 15$ of a litre of water. A few minutes later, she added $3 / 5$ a litre of water How much water was within the bucket?

$$
\begin{aligned}
& \frac{2}{15}+\frac{3}{5}=? \\
& \frac{2}{15}+\frac{3 \times 3}{5 \times 3} \\
& \frac{2}{15}+\frac{9}{15}=\frac{2+9}{15}=\frac{11}{15}
\end{aligned}
$$ \& Numerator, denominator, Fraction

\hline
\end{tabular}

Progression in Subtraction

	Strategy	Examples	Vocabulary
	Practical activities through play	Role play activities - The shop has 5 apples and sells 1. How many apples are left in the shop?	

Use unstructured number line
to subtract a two digit number
from a two digit number
jumping in 10s and 1 s
(Pre-requisite skill counting
on and back in steps of 10 and
from different starting
numbers)

		Abstract A child has 72 marbles and gives away 24 . How many are left? $\begin{array}{r} 702 \\ -204 \\ \hline \end{array}$ 60 and 12 Ten has been taken from 70 and added to the 2 so that the subtraction can $\begin{array}{r} 20 \text { and } 4 \\ \hline 40 \text { and } 8 \\ \hline \end{array}$ So the answer is 48 marbles.	
Year 3/4	Expanded column or vertical method. Taking away a three digit number from another three digit number	At half time in a football match, 278 fans buy a hot dog. If there are 563 fans altogether, how many did not buy a hot dog? So the answer is 285 hot dogs This will then translate into a formal method without expanding the numbers.	Partition, expanded column or vertical method, adjust
	Column or vertical method, compact method, formal decomposition	A piece of ribbon is 135 cm long. 22 cm are cut off. What length is left? $\begin{array}{r} 135 \\ -\quad 22 \\ \hline 113 \end{array}$ There is 113 cm left	Column or vertical method, compact method, formal decomposition
	Column or vertical method with exchange	A piece of wood is 135 cm long. 28 cm are cut off. What length of wood is left? Calculation: $135-28=1^{2} 3 \$$ $\frac{-28}{107}$ The wood is 107 cm long	Exchanging, compact vertical method
	Column subtraction borrowing over more than one place value.	$\begin{aligned} & \text { Sally bought } 3 \text { magazines costing } £ 2.32 . \quad \text {, She handed over a } £ 4.00 \text {. How much change will she receive? } \\ & { }^{3} 4{ }^{1} Q^{\prime} 0 \\ & -2.32 \\ & \frac{-2.68}{1.6} \\ & \hline \end{aligned}$	
Year 3/4	Children should be able to re write and use the inverse operation	$342-\quad=186$ \quad ? Children can see how 342 subtract 186 will allow us to find the missing value. $342-186=$? Children can then use a numberline or a column method to calculate this sum. 342	

		$\begin{array}{r} -\quad 186 \\ \hline \\ \hline \end{array}$	
Year 3/4	Children will be able to subtract fractions with the same denominator	$\frac{3}{4}-\frac{2}{4}=\frac{1}{4}$	
Year 5 /6	Column or vertical method with decimals	A plant root measures 23.062 cm . As part of an experiment a scientist cuts off 1.0005 cm . How much root is left? $\begin{array}{r} 23.0621 \\ -\quad 1.0005 \\ \hline 22.0615 \\ \hline \end{array}$ 22.0615 cm of root is left (22.06 cm rounded to 2 decimal places)	Exchanging, concise column or vertical method
	Children will be able to subtract fractions with common denominators	$\begin{aligned} & \frac{3}{4}-\frac{1}{3}=\frac{3 \times 3}{4 \times 3}-\frac{1 \times 4}{3 \times 4} \\ &=\frac{9}{} \begin{array}{l} \text { If there is } 3 / 4 \text { of a pizza left and } I \text { eat } 1 / 3 \text { of it. How much pizza will } \\ \text { remain? } \end{array} \\ &=\frac{\mathbf{5}}{12} \end{aligned}$	fraction, proper/improper fraction mixed number numerator, denominator
Year 5/6	Children can use the bar model to solve 2 step problems which uses different operations.	I cut 60 cm from 3.3 m of string and shared the rest between 3 friends. How much string did they get each? \square 60 cm ?	Exchange Borrow Split, Total,
		$3.3 \mathrm{~m}(330 \mathrm{~cm})-60 \mathrm{~cm}=270 \mathrm{~cm}$ 270 cm divided by $3=90 \mathrm{~cm}$	
Year 5/6	Solving multi step problems in context that require children to consider the order the problem should be solved	I have read 213 pages of my 1004 page book. How many pages must I read until I reach the middle? Children should mentally half $1004=502$ 502 $\frac{-213}{289}$	Half Subtract Less
	Subtraction fraction that have different denominators.	$\begin{aligned} \frac{3}{4}-\frac{1}{3} & =\frac{3 \times 3}{4 \times 3}-\frac{1 \times 4}{3 \times 4} \\ & =\frac{9}{19}-\frac{4}{19} \end{aligned}$	fraction, proper/improper fraction

			mixed number numerator, denominator

Progression in Multiplication

Year Group	Strategy	Examples	Vocabulary
Year 1	Count in multiples.	Children should be able to count in multiples of 2,5 and 10 There are 2 wheels on each bike how many altogether?	
Year 1	Grouping and 'lots of' with concrete materials and recording using pictures	Each teddy has two buttons. Draw the buttons on the teddy bears. How many buttons is that altogether?	Group, lots of, altogether

		2 buttons and 2 buttons and 2 buttons and 2 buttons is 8 buttons	
	Pre-multiplication: Understand the idea of arrays: 2 rows with 3 eggs in each row 3 columns with 2 eggs in each column	Noticing arrays in everyday objects e.g. chocolates in a box, windows in a building - use the language of arrays. 2 rows of 3 eggs.	Rows of, arrays, columns
Year 2	Double and halve numbers of multiples of 5 .	Mentally- Double $25=50$ Partition a number and then double each part before recombining it back together. Represent or draw the number and create it again before adding together	Double Lots of
Year 2	Understand multiplication as 'groups of', equal jumps 6x8 \} 6 multiplied by 8 \} 8 lots of $6 \quad\}$ -all meaning the same	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ There are six carrots in a bag. How many carrots are there in eight bags? $6 \times 8=48$ There are 48 carrots altogether.	$\begin{aligned} & \text { Groups of, } \\ & \text { altogether, } \\ & \text { counting } \\ & \text { forwards, equal } \\ & \text { steps, equal } \\ & \text { jumps } \end{aligned}$
	Arrays showing communitive values		Groups of, altogether, counting forwards, equal

Multiply both proper and improper fractions	$\frac{2}{5} \times \frac{6}{7}=\frac{2 \times 6}{5 \times 7}=\frac{12}{35}$
	$\frac{1}{4} \times \frac{2}{3}=\frac{1 \times 2}{4 \times 3}=\frac{2}{12}=$reduces to$\frac{1}{6}$

Multiply,

Divide,
denominator numerator vinculum

Progression in Division

| Year |
| :--- | :--- | :--- |
| Group | Strategy | Sharing with concrete materials |
| :--- |
| and recording using pictures | Share the buttons between the teddy bears equally.

		$12-2-2-2-2-2-2$ There are six bicycles.	
	Pictorial (bar model) allow the problem to be represented as an image.	Mr Siddique shares $£ 18$ equally between his three sons. How much does each son get?	Share equally. Total divided by... Repeated subtraction
$\begin{aligned} & \text { Year } 2 \\ & / 3 \end{aligned}$	Grouping using structured number line to represent jumping back in equal steps to zero with remainders.	I have 22 cakes; I can fit 5 cakes in a box. How many boxes will I need? How many cakes left over?	Left over, remainder
	Understand the link between jumping along the number line in equal groups and rotating the number line through 90° and chunking in equal groups.	A cat has eighteen treats. If he is given three treats each day, how many days will the treats last? $18-3-3-3-3-3-3$ $18-3-3-3-3-3-3=6$ The treats will last 6 days as we have taken away 3, six times.	Number line, vertical number line, chunking divide, division, divided by, divided into left, left over, remainder

		$\begin{array}{rr} 51 & \\ -\frac{30}{21} & (10 \times 3) \\ -\frac{21}{0} & (7 \times 3) \end{array}$ So $27 \times 3=81$ or $81 \div 3=27$ Each person gets 27 stickers. Check- $27 \mathrm{x} 3=81$	
Year 4	Chunking method with remainders	560 bananas are ordered for 24 monkeys. The monkeys only eat whole bananas. How many bananas do they get each? Are there any left over? Calculation: $560 \div 24=$ $\begin{aligned} &24) \overline{560} \\ &-\frac{240}{320}(10 \times 24) \quad \text { (Chunk using what you know) } \\ &-\frac{240}{80}(10 \times 24) \\ &-\frac{48}{32}(2 \times 24) \\ &-\frac{24}{8}(1 \times 24) \end{aligned}$ So $560 \div 24=23$ r 8 Each monkey gets 23 bananas. There are 8 bananas left over. Checking $552 \div 23=24$ and 8 left over	Remainder
Year 4	Bar model to calculate several fractional amounts of a total	Kelly buys four fifths of the shop's oranges. If the shop had 20 oranges, how many does she have? 4 parts are needed due to it being four fifths so $4 \times 4=16$	Whole Multiply Add Share equally divide
Year 5	Begin to use short multiplication identifying the subtracted amounts.	Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over We exchange this ten for ten ones and then share the ones equally among the groups	

		I have 576 balloons for a party. There are 9 families attending. How many balloons will each family be allowed to take? $\begin{array}{r} \frac{064}{9} \begin{array}{c} 576 \\ 57 \\ -\quad \frac{54}{36} \\ -36 \\ \hline 0 \end{array} \end{array}$	
Year 5	Short division requires a up to a 4 digit number to be divided by a 1 digit number	Sarah’s gran gave her $£ 2532$ and she decided to share it amongst herself and her 5 children. How much money did they each receive How many 6 in 25? 4, this $\begin{array}{rr} \text { Quotient } & 422 \\ & 6 \longdiv { 2 5 3 2 } \end{array}$ becomes part of the quotient with 1 remaining. The 1 then moves to the 3 making 13 tens. How many 6 in $13 ? 2$ this becomes the tens part of the quotient with 1 remaining. Giving 12 units. How many 6 s in $12=2$. Move on to short division with remainders Followed by decimals	\div divide, division, divided by, divided into left, left over, remainder Quotient
	Bar model allows children to represent the whole and identify a percentage of this.	. Sam calculated 40% of 120 . What answer does he get? Begin by calculating 10%. The bar model allows children to see 10 equal parts of $120=12$	

