Year 1		Year 2		Year 3		Year 4		Year 5		Year 6		
Unit	Objectives	Unit		Objectives								
Yr R		Numbers 10-100		Numbers to 1000		numbers to 10,000		decimal fractions		Numbers 10,000,000		
	Pupils count within 100 in different ways		Pupils explain that one ten is equivalent to ten ones		Pupils explain that 100 is composed of ten tens and one hundred ones		Pupils explain how many tens, hundreds and ones 1,000 is composed of		Pupils identify tenths as part of a whole			Pupils use representations to identify and explain patterns in powers of 10
			Pupils represent multiples of ten using their numerals		Pupils explain that 100 is composed of 50s 25 s and 20s		Pupils use knowledge of 1,000 to explain common measure conversions		Pupils describe and represent tenths as a decimal fraction			Pupils compose seven or eight-digit numbers using common intervals
Comparisons ofquantities quantities			Pupils represent multiples of ten using their numerals and names		Pupils use known facts to find multiples of ten that compose 100		Pupils use knowledge of 1,000 to solve problems		Pupils count in tenths in different ways			Pupils use their knowledge of the composition of up to eight-digit numbers to solve problems
	Pupils explain that items can be compared using length and height		Pupils represent multiples of ten in an expression or an equation		Pupils will use known facts to find a two-digit number and a one- or two-digit number that compose 100		Pupils use different strategies to add multiples of 100		Pupils describe and write decimal numbers with tenths in different ways			Pupils explain how to read numbers with up to seven digits efficiently
	Pupils explain that items can be compared using weight/mass and volume/capacity		Pupils estimate the position of multiples of ten on a 0-100 number line		Pupils use known facts to find correct complements to 100		Pupils use different strategies to subtract multiples of 100		Pupils compare and order decimal numbers with tenths			Pupils recognise and create numbers that contain place-holding zeroes
Pupils count a set of objects		6	Pupils explain what happens when you add and subtract ten to a multiple of ten		Pupils use known facts to find complements to 100 accurately and efficiently		Pupils use knowledge of calculation and common measure conversions to solve problems		Pupils explain that decimal numbers with tenths can be composed additively			Pupils determine the value of digits in numbers up to tens of millions
Pupils compare sets ofobjects			Pupils use knowledge of facts and unitising to add and subtract multiples of ten	Pupils represent a three-digit number which is a multiple of en using their numerals and 7 names		$\begin{aligned} & \text { Pupils compose and } \\ & \text { decompose four-digit numbers } \\ & 7 \text { in different ways } \end{aligned}$			Pupils explain that decimal numbers with tenths can be composed multiplicatively		Pupils explain how to compare up to eight7 digit numbers	
	Pupils use equality and inequality symbols to compare sets of objects		Pupis add and subtract 8 multipies of ten Pupils explore the ecounting seauence for counting to 100 and beyond		Pupils use place value knowledge to write addition 8 and subtraction equations		Pupils use strategies to make solving calculations more 8 efficient		Pupils use their knowledge to calculate with decimal number 8 within and across one whole		Pupils use their knowledge of the composition of seven-digit numbers to 8 solve problems	
	Pupils use equality and inequality symbols to compare expressions				Pupils bridge 100 by adding r subtracting in multiples of 9 ten		Pupils compare and order 9 four-digit numbers		Pupils use their knowledge to calculate with decimal numbers 9 using mental methods		Pupils add and subtract mentally without bridging a boundary (only one and more 9 than one digit changes)	
	Pupils explain what a whole is	10	Pupils count a large group of objects by counting groups of tens and the extra ones		Pupils use knowledge of adaition and subtraction of muttiples of ten briaging the problems		Pupils calculate efficiently by using knowledge of place 10 value, addition and subtraction		Pupils use their knowledge to calculate with decimal numbers sing column addition and 10 subtraction			Pupils add numbers whilst crossing the millions boundary
8	Pupils explain that a whole can be split into parts		Pupils count a large group of objects by using knowledge of unitising by counting tens and ones	11	Pupils count across and on from 100	11	Pupils explain what rounding is		$\begin{aligned} & \text { Pupils use representations to } \\ & \text { round a decimal number with } \\ & \text { tenths to the nearest whole } \\ & 11 \text { number } \end{aligned}$		Pupils subtract numbers whilst crossing the millions boundary (multiples of 100,000 11 and different powers of 10)	
	Pupils explain that a whole can represent a group of objects	12	Pupils represent a number from 20-99 in different ways		Pupils represent a three-digit number up to 199 in different ways		Pupils round a four-digit number to the nearest thousand		Pupils identify hundredths as part of a whole			Pupils explain how a seven-digit number can be composed and decomposed into parts
10	Pupis identify a part of a whole group	13	Pupils explain and mark the position of numbers 20-99 on a number line		Pupils bridge 100 by adding or subtracting a single-digit number		Pupils round a four-digit number to the nearest hundred and ten		Pupils describe and represent 3 hundredths as a decimal fraction			Pupils identify and explain a pattern in a counting sequence
11	Pupils explain what a partwhole model is	14	Pupils explain that numbers 20-99 can be represented as a length	14	Pupils find ten more or ten less than a given number		Pupils round a four-digit number to the nearest housand, hundred and ten		Pupils describe and write decimals numbers with hundredths in different ways		Pupils identify numbers with up to seven 4 digits on marked number lines	
12	Pupils use a part-whole model to represent a whole partitioned into two parts	15	Pupils compare two, two-digit numbers		Pupils cross the hundreds boundary when adding and subtracting any two-digit multiple of ten		Pupils add up to 3 four-digit numbers using a column addition		Pupils compare and order decimal numbers with hundredths		Pupils estimate the value and position of numbers on unmarked or partially marked 5 number lines	
13	Pupils use a part-whole model to represent a whole two parts	16	Pupils partition a two-digit number into tens and ones		Pupils become familiar with a metre ruler (marked and unmarked intervals, $1 \times 1 \mathrm{~m}$ $10 \times 10 \mathrm{~cm}, 100 \times 1 \mathrm{~cm}$)		Pupils subtract four-digit numbers using a column subtraction		Pupils explain that decimal numbers with hundredths can be partitioned in different ways		Pupils explain why we round and how to round seven-digit numbers to the nearest million	
numbers 0-5		17	Pupils add two, two-digit numbers by partitioning into tens and ones		Pupils measure length and height from zero using whole metres and cm		Pupils use strategies to make solving calculations more efficient		Pupils use their knowledge of decimal place value to conver between and compare metres and centimetres			Pupils explain how to round seven-digit numbers to the nearest hundred thousand
	Pupils explain that numbers can represent how many objects there are in a set				Pupils measure length and 8 height from zero using cm		Pupils explain how many '100s' and '200s', 1,000 is composed of		Pupils explain that different lengths can be composed additively and multiplicatively		Pupils explain how to round up to seven- 8 digit numbers to any power of 10 in context	
	Pupils explain that ordinal numbers show a position and not a set of objects						Pupils explain how many '500s' and '250s', 1,000 is 9 composed of		Pupils use their knowledge of decimal place value to solve problems in different contexts		Pupils identify and explain the most efficient way to solve a calculation	

	Pupils use knowledge of the best way to interpret and represent remainders from a range of division contexts
	Pupils explain how and why a product changes when a factor changes multiplicatively
26	Pupils use their knowledge of multiplicative change to solve problems efficiently (multiplication)
	Pupils explain how and why a quotient changes when a dividend changes multiplicatively (increase or decrease)
	Pupils explain how and why a quotient changes when a divisor changes multiplicatively
29	Pupils identify and explain the relationship between divisors and quotients
Ratio and proportion	
	Pupils describe the relationship between two factors (in a ratio context)
	Pupils explain how to use multiplication and division to calculate unknown values (two variables)
	Pupils explain how to use multiplication and division to calculate unknown values (three variables)
	Pupils explain how to use a ratio grid to calculate unknown values
	Pupils explain how to use multiplication to solve correspondence problems
	Pupils explain how and why scaling is used to make and interpret maps
	Pupils will use their knowledge of multiplication and division to solve scaling problems in a range of contexts
	Pupils identify and describe the relationship between two shapes using scale factors (squares)
	Pupils identify and describe the relationship between two shapes using scale factors and ratios (regular polygons)
10	Pupils identify and describe the relationship between two shapes using scale factors and ratios (irregular polygons)
Calculating using knowledge of structures (2) structures (2)	

Year 1		Year 2		Year 3		Year 4		Year 5		Year 6	
Unit	Objectives										
N/A		introduction to multiplication		2, 4, 8 times tables		Understanding multiplicative relationships		short multiplication and division		Knowing knowledge structures	
			Pupils explain that objects can be grouped in different ways		Pupils represent counting in fours as the 4 times table		Pupils explain what each factor represents in a multiplication equation		Pupils multiply a two-digit number by a single-digit number using partitioning and representations (no regroups)		Pupils explain how a combination of different parts can be equivalent to the same whole and can represent this in an expression
			Pupils describe how objects have been grouped		Pupils use knowledge of the 4 times table to solve problems	2	Pupils explain how each part of a multiplication and division equation relates to a story	2	Pupils multiply a two-digit number by a single-digit number using partitioning and representations (one regroup)		Pupils identify structures within stories and use their knowledge of structures to create stories
			Pupils represent equal groups as repeated addition		Pupils explain the relationship between adjacent multiples of four	3	Pupils explain where zero can be part of a multiplication or division expression and the impact it has		Pupils multiply a two-digit number by a single-digit number using partitioning and representations (two regroups)		Pupils identify the missing part using their knowledge of part whole relationships and structures
			Pupils represent equal groups as repeated addition and multiplication		Pupils explain the relationship between multiples of 2 and multiples of 4		Pupils partition one of the factors in a multiplication equation in different ways using representations (I)	4	Pupils multiply a two-digit number by a single-digit number using partitioning		Pupils interpret and represent a part-whole problem with 3 addends using a model
			Pupils represent equal groups as multiplication		Pupils use knowledge of the relationships between the 2 and 4 times tables to solve problems	5	Pupils partition one of the factors in a multiplication equation in different ways using representations (II)	5	Pupils multiply a two-digit number by a single-digit number using expanded multiplication (no regroups)		Pupils create stories to correctly match a structure presented in a model
			Pupils explain and represent multiplication when a group contains zero or one items		Pupils represent counting in eights as the 8 times table	6	Pupils explain which is the most efficient factor to partition to solve a multiplication problem	6	Pupils multiply a two-digit number by a single-digit number using short multiplication (no regroups)		Pupils use their knowledge of additive structures to solve problems
			Pupils identify and explain each part of a multiplication equation		Pupils explain the relationship between adjacent multiples of eight		Pupils use knowledge of distributive law to solve two part addition and subtraction problems, efficiently		Pupils multiply a two-digit number by a single-digit number using expanded multiplication (regrouping ones to tens)		Pupils calculate the value of a missing part (1)
			Pupils use knowledge of multiplication to calculate the product		$\begin{aligned} & \text { Pupils explain the } \\ & \text { relationshi } \\ & \text { between multiples } \\ & \text { of } 4 \text { and multiples of } \\ & 8 \\ & \hline \end{aligned}$		Pupils use knowledge of distributive law to calculate products beyond known times tables facts		Pupils multiply a two-digit number by a single-digit number using short multiplication (regrouping ones to tens)		Pupils calculate the value of a missing part (2)
			Pupils represent the two times table in different ways		Pupils use knowledge of the relationships between the 4 and 8 times tables to solve problems		Pupils explain the relationship between multiplying a number by 10 and multiples of 10		Pupils multiply a two-digit number by a single-digit number using expanded multiplication (regrouping tens to hundreds)		Pupils correctly represent an equation in a part-whole model
		10	Pupils use knowledge of the two times table to solve problems		$\begin{aligned} & \hline \text { Pupils explain the } \\ & \text { relationshi } \\ & \text { between multiples } \\ & \text { of } 2,4 \text { and multiples } \\ & \text { of } 8 \\ & \hline \end{aligned}$	10	Pupils explain why a zero can be placed after the final digit of a single-digit number when we multiply it by 10	10	Pupils multiply a two-digit number by a single-digit number using short multiplication (regrouping tens to hundreds)	10	Pupils explain how adjusting both addends affects the sum (2 digit numbers)
			Pupils explain the relationship between adjacent multiples of two		Pupils use knowledge of the relationships between the 2, 4 and 8 times tables to solve problems		Pupils explain why a zero can be placed after the final digit of a twodigit number when we multiply it by 10	11	Pupils multiply a two-digit number by a single-digit number using both expanded and short multiplication (two regroups)		Pupils explain how adjusting both addends affects the sum (decimal fractions)
		12	Pupils explain that factor pairs can be written in any order		Pupils use knowledge of the divisibility rules for divisors of 2 and 4 to solve problems \qquad		Pupils explain why the final digit zero can be removed from a twodigit multiple of 10 , when we divide by 10	12	Pupils use estimation to support accurate calculation	12	Pupils use the 'same sum' rule to balance equations
		13	Pupils represent counting in tens as the ten times table		Pupils use knowledge of the divisibility rules for divisors of 8 to solve problems	13	Pupils explain why the final digit zero can be removed from a threedigit multiple of 10 , when we divide by 10	13	Pupils multiply a three-digit number by a single-digit number using partitioning and representations	13	Pupils use the 'same sum' rule to balance equations with an unknown
		14	Pupils represent the ten times table in different ways		Pupils scale known multiplication facts by 10	14	Pupils explain the relationship between multiplying a number by 100 and multiples of 100	14	Pupils multiply a three-digit number by a single-digit number using partitioning	14	Pupils explain how adjusting one addend affects the sum
			Pupils explain the relationship between adjacent multiples of en		Pupils scale division derived from multiplication facts by 10		Pupils explain why two zeros can be placed after the final digit of a single-digit number when we multiply it by 100		Pupils multiply a three-digit number by a single-digit number using expanded and short multiplication (no regroups)	15	Pupils solve addition calculations mentally by using known facts

	Pupils explain how to multiply and divide a number by 10,100 and 1,000 (first 'number' two or more non-zero digits)	6	Pupils explain how to multiply a three-digit by a two-digit number
	Pupils use their knowledge of multiplication and division by 10/1000/1,000 oc convert between units of measure (length)		Pupils explain how to accurately use the method of long multiplication to multiply two, two-digit numbers (no regrouping of ones to tens)
	Pupils use their knowledge of multiplication and division by 10/100/1,000 to convert between units of measure (mass and capacity)	8	Pupils explain how to accurately use the method of long multiplication (with regrouping of ones to tens)
	Pupils explain how to use known multiplication facts and unitising to multiply decimal fractions by whole numbers (tenths)		Pupils explain how to accurately use the method of long multiplication (with regrouping of ones to tens \& tens to hundreds)
	Pupils explain how to use known multiplication facts and unitising to multiply decimal fractions by whole numbers (hundredths)	10	Pupils explain how to accurately use the method of long multiplication to multiply a three-digit by a two-digit number
	Pupils use their knowledge of multiplying decimal fractions by whole numbers to solve measures problems	11	Pupils explain how to accurately use the method of long multiplication to multiply a four-digit by a two-digit number
	Pupils explain the relationship between multiplying by 0.1 dividing by 10	12	Pupils explain how to use the associative law to multiply efficiently
10	Pupils explain the relationship between multiplying by 0.01 dividing by 100	13	Pupils explain when it is more efficient to use long multiplication or factorising to multiply by two-digit numbers
	Pupils explain how to use multiplying by 10 or 100 to multiply one-digit numbers by decimal fractions (1)	14	Pupils explain how to use accurately the methods of short and long division (two and thre--digit number by multiples of 10)
12	Pupils explain how to use multiplying by 10 or 100 to multiply one-digit numbers by decimal fractions (2)	15	Pupils explain how to use accurately the method of long division with and without remainders (two-digit by two-digit numbers)
13	Pupils explain how to use the size of the multiplier to predict the size of the product compared to the multiplicand	16	Pupils use knowledge of long division to solve problems in a range of contexts (with and without remainders)
14	Pupils explain how to use multiplying by 10 or 100 to divide decimal fractions by one-digit numbers (1)	17	Pupils explain how to use a ratio chart to solve efficiently: short division
15	Pupils explain how to use multiplying by 10 or 100 to divide decimal fractions by one-digit numbers (2)	18	Pupils explain how to use a ratio chart to solve efficiently: long division
		19	Pupils explain how to use a ratio chart to solve efficiently: long division (II)
Factors multiples and primes		20	Pupils explain how to use accurately the method of long division with and without remainders (three-digit by two-digit, four-digit by two-digit numbers
	Pupils explain what 'volume' is using a range of context	21	Pupils use long division with decimal remainders (1 decimal place)
	Pupils describe the units used to measure volume	22	Pupils use long division with fraction remainders
	Pupils explain how to calculate the volume of a cuboid	23	Pupils use long division with decimal remainders (2 decimal places)
	Pupils explain what a cube number is	24	Pupils use knowledge of the best way to interpret and represent remainders from a range of division contexts
	Pupils use their knowledge of calculating volume to solve problems in a range of contexts	25	Pupils explain how and why a product changes when a factor changes multiplicatively
	Pupils explain how to calculate the volume of compound shapes	26	Pupils use their knowledge of multiplicative change to solve problems efficiently (multiplication)

		\square	\square						
			-	-	-				

	Pupils represent the structure of contextual problems with two unknowns
4	Pupils represent a problem with two unknowns using a bar model
5	Pupils explain why sometimes there is only one solution to a sum and difference problem
6	Pupils explain why sometimes there is only one solution to a sum and multiple problem
7	Pupils explain the values a part-whole model could represent
8	Pupils use a bar model to visualise how to solve a problem with two unknowns
9	Pupils use diagrams to explain how to solve a spatial problem
10	Pupils explain how to represent an equation with a bar model
11	Pupils solve problems with two unknowns in a range of contexts
12	Pupils systematically solve problems with two unknowns using 'trial and improvement' (one and several solutions)
13	Pupils explain how I know I have found all possible solutions to problems with two unknowns
14	Pupils explain how to balance an equation with two unknowns
15	Pupils systematically solve problems with two unknowns using 'trial and improvement' (one, several and infinite solutions)

17	Pupils find a unit fraction when the size of a non-unit fraction is known	17	Pupils explain how to compare pairs of nonrelated fractions (converting to common denominators)
18	Pupils find the whole when the size of a non-unit fraction is known	18	Pupils explain how to compare pairs of nonrelated fractions (using fraction sense)
19	Pupils find the unit fraction when the size of a non-unit fraction is known	19	Pupils explain how to compare pairs of nonrelated fractions (using common numerators)
20	Pupils use representations to describe and compare two fractions (1/4 and 3/12)	20	Pupils explain which method for comparing non-related fractions is most efficient
21	Pupils use representations to describe and compare two fractions ($1 / 5$ and 5/10)	21	Pupils explain how to multiply two unit fractions
22	Pupils use representations to describe and compare two fractions (pouring context)	22	Pupils explain how to multiply two non-unit fractions
23	Pupils correctly use the language of equivalent fractions	23	Pupils explain how to divide a unit fraction by a whole number
24	Pupils explain the vertical relationship between numerators and denominators within equivalent fractions ($1 / 5,1 / 3$ and equivalent) equivalent)	24	Pupils explain how to divide a non-unit fraction by a whole number
25	Pupils use their knowledge of the vertical relationship to solve equivalent fractions problems	25	Pupils explain when and how to divide efficiently a fraction by a whole number
26	Pupils explain the horizontal relationship between numerators and denominators across equivalent fractions ($1 / 5,1 / 3$ and equivalent)	26	Pupils explain what percent means
27	Pupils explain the relationship within families of equivalent fractions	27	Pupils explain how to represent a percentage in different ways
28	Pupils use their knowledge of equivalent fractions to solve problems	28	Pupils explain how to convert percentages to decimals and fractions (with a denominator of 100)
29	Pupils explain and represent how to divide 1 into different amounts of equal parts	29	Pupils explain how to convert a percentage to a fraction (without denominator of 100)
30	Pupils identify and describe patterns within the number system	30	Pupils use their knowledge of fraction-decimal-percentage conversions to solve conversion problems in a range of contexts
31	Pupils use their knowledge of common equivalents to compare fractions with decimals	1	Pupils use their knowledge of calculating 50%, 10% and 1% of a number to solve problems in a range of contexts
32	Pupils practise recalling common fraction-decimal equivalents	32	Pupils use their knowledge of calculating common percentages of a number to solve problems in a range of contexts

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Year 1		Year 2		Year 3		Year 4		Year 5		Year 6	
Unit	Objectives										
Position direction		Money		Time		Time		decimal fractions		Multiples of 1000	
									Pupils identify tenths as part of a whole	1	Pupils explain how ten thousand can be composed
Time		Fractions							Pupils describe and represent tenths as a decimal fraction	2	Pupils explain how one hundred thousand can be composed
			Pupils identify whether something has or has not been split into equal parts					3	Pupils count in tenths in different ways	3	Pupils read and write numbers up to one million (1)
		2	Pupils name the fraction 'one-half' in relation to a fraction of a length, shape or set of objects						Pupils describe and write decimal numbers with tenths in different ways	4	Pupils read and write numbers up to one million (2)
		3	Pupils name the fraction 'one-quarter' in relation to a fraction of a length, shape or set of objects						Pupils compare and order decimal numbers with tenths	5	Pupils identify and place the position of five-digit multiple of one thousand numbers, on a marked, but unlabelled number line
		4 f	Pupils name the fraction 'one-third' in relation to a fraction of a length, shape or set of objects						Pupils explain that decimal numbers with tenths can be composed additively	6	Pupils identify and place the position of six-digit multiple of one thousand numbers, on a marked, but unlabelled number line
			Pupils read and write the fraction notation $1 / 2,1 / 3$ and $1 / 4$ and relate this to a fraction of a length, shape or set of objects						Pupils explain that decimal numbers with tenths can be composed multiplicatively	7	Pupils count forwards and backwards in steps of powers of 10 , from any multiple of 1,000
		6 P	Pupils find half of numbers						Pupils use their knowledge to calculate with decimal numbers within and across one whole	8	Pupils explain that 10,000 is composed of 5,000 s 2,500 s and 2,000 s
		7 P	Pupils find $1 / 3$ or $1 /$ of a number						Pupils use their knowledge to calculate with decimal numbers using mental methods	9	Pupils explain that 100,000 is composed of 50,000 s 25,000 s and 20,000s
		8	Pupils find $1 / 4$ and $3 / 4$ of an object, shape, set of objects, length or quantity						Pupils use their knowledge to calculate with decimal numbers using column addition and subtraction	10	Pupils read scales in graphing and measures contexts, by using their knowledge of the composition of 10,000 and 100,000
		9	Pupils recognise the equivalence of 24 and $1 / 2$						$\begin{aligned} & \text { Pupils use representations to round a } \\ & \text { decimal number with tenths to the nearest } \\ & \text { whole number } \end{aligned}$		
								12	Pupils identify hundredths as part of a whole	Multiplication and division	
		Time						13	Pupils describe and represent hundredths as a decimal fraction	1	Pupils explain why the product stays the same when one factor is doubled and the other is halved
								14	Pupils describe and write decimals numbers with hundredths in different ways	2	Pupils explain the effect on the product when scaling the factors by the same amount
		Position and direction						15	Pupils compare and order decimal numbers with hundredths	3	Pupils use their knowledge of equivalence when scaling factors to solve problems
									Pupils explain that decimal numbers with hundredths can be partitioned in different ways	4	Pupils explain the effect on the quotient when scaling the dividend and divisor by 10
		Multiplication and division							Pupils use their knowledge of decimal place value to convert between and compare metres and centimetres		Pupils explain the effect on the quotient when scaling the dividend and divisor by the same amount
			Pupils identify the patterns and relationships between the 5 and 10 times tables						Pupils explain that different lengths can be composed additively and multiplicatively	6	Pupils explain how to multiply a three-digit by a two-digit number
		2 t	Pupils explain the patterns and relationships between the 5 and 10 times tables						Pupils use their knowledge of decimal place value to solve problems in different contexts		Pupils explain how to accurately use the method of long multiplication to multiply two, two-digit numbers (no regrouping of ones to tens)
		${ }_{3}$	Pupils use their knowledge of the 5 and 10 times tables to solve problems					20	Pupils use their knowledge to calculate with decimal numbers up to and bridging one tenth	8	Pupils explain how to accurately use the method of long multiplication (with regrouping of ones to tens)
		45	Pupils identify and explain relationships between the 5 and the 10 times tables					21	Pupils use their knowledge to calculate with decimal numbers using column addition and subtraction		Pupils explain how to accurately use the method of long multiplication (with regrouping of ones to tens \& tens to hundreds)
		5 t	Pupils use their knowledge of the 5 and 10 times tables to solve problems					22	Pupils round a decimal number with hundredths to the nearest tenth	10	Pupils explain how to accurately use the method of long multiplication to multiply a three-digit by a two-digit number
			Pupils explain how times table facts can help to find the quotient (10 times table)					23	Pupils round a decimal number with hundredths to the nearest whole number	11	Pupils explain how to accurately use the method of long multiplication to multiply a four-digit by a two-digit number
			Pupils explain how times table facts can help to find the quotient (5 times table)					24	Pupils read and write numbers with up to 3 decimal places	12	Pupils explain how to use the associative law to multiply efficiently
		8 t	Pupils explain how times table facts can help to find the quotient (2 times table)					25	Pupils compare and order numbers with up to 3 decimal places	13	Pupils explain when it is more efficient to use long multiplication or factorising to multiply by two-digit numbers
			Pupils explain how a division equation with 2 as a divisor is related to halving							14	Pupils explain how to use accurately the methods of short and long division (two and three-digit number by multiples of 10)
		10	Pupils explain each part of a division equation and know how they can be interchanged					Negative numbers		15	Pupils explain how to use accurately the method of long division with and without remainders (two-digit by two-digit numbers)

		-	-				
				\square			

		Pupils explain how addition and subtraction can help to solve multiplication problems efficiently (II)
		Pupils explain how the distributive law applies to multiplication expressions with a common factor (addition)
		Pupils use their knowledge of the distributive law to solve equations including multiplication, addition and subtraction
		Pupils explain how addition and subtraction can help to solve division problems efficiently
		Pupils explain how the distributive law applies to division expressions with a common divisor (addition)
		Pupils explain how the distributive law applies to division expressions with a common divisor (subtraction)
		Pupils use their knowledge of the distributive law to solve equations including division, addition and subtraction
	Mean	
		Pupils explain the relationship between the mean and sharing equally
		Pupils explain how to calculate the mean of a set of data
		Pupils explain how the mean changes when the total quantity or number of values changes
		Pupils explain how to calculate the mean when one of the values in the data set is zero or missing
		Pupils explain how to use the mean to make comparisons between two sets of information
		Pupils explain when the mean is not an appropriate representation of a set of data

